Atoms in the Air
November 1946 Air Trails

November 1946 Air Trails

November 1946 Air Trails Cover - Airplanes and Rockets Table of Contents

These pages from vintage modeling magazines like Flying Aces, Air Trails, American Modeler, American Aircraft Modeler, Young Men, Flying Models, Model Airplane News, R/C Modeler, captured the era. All copyrights acknowledged.

Atomic power was going to be the panacea for all the world's energy needs back in the mid-20th century. Every home would be powered by a personal nuclear generator, cars and trains would only need to be refueled once a year. Some military seafaring vessels are powered by nuclear fuel, but that's about it. This article from the November 1946 edition of Air Trails details serious studies for a nuclear powered aircraft. In the end, it was not the ability to build the engine that was the problem, it was the size and weight of all the lead and concrete shielding that would be required to protect personnel. Any crash or accident that caused the reactor cell to be breeched would be an utter disaster. Of course everyone involved knew that from the outset, but the government needed to convene a panel, form a research group, draw up a plan, assemble a team of managers and scientists, acquire a facility and equipment, implant on-site inspectors and regulators, do the science, verify the results, write the report, approve the report, distribute the report, receive feedback from the report, incorporate suggested changes into the report, repeat the last three steps, and finally publish the report (unless, of course, it is a classified report).

Atoms in the Air

Atoms in the Air, November 1946 Air Trails - Airplanes and RocketsThe Fairchild Engine Airplane Corp. has taken a contract to develop atomic-powered aircraft for the Army - and the information released on the subject sayeth no more. But a little simple addition - a fact here, a fact there - brings up some highly interesting conclusions, from the facts already generally published.

Many discussions by the atomic scientists in the last year have made it abundantly clear that atomic engines are not practical for automobiles or ordinary-sized aircraft, but, that they are practicable for steamships and, possibly, heavy. large-sized locomotives. The essential trouble with atomic engines is that atomic energy and human life are simply and absolutely incompatible. No living thing can come within half a mile of a functioning atomic powerplant and stay alive - unless there is a monstrous amount of radiation-absorbing shielding between.

Even a shoe that has touched a floor that was touched by atomic power can be deadly must be inspected - Airplanes and Rockets

Even a shoe that has touched a floor that was touched by atomic power can be deadly must be inspected!

There's an atomic pile behind those many-foot- thick concrete wall but such shields don't fly - Airplanes and Rockets

There's an atomic pile behind those many-foot- thick concrete wall but such shields don't fly!

There's a general public misconception that lead is a magic metal capable of stopping all rays; it's neither magic, nor capable of stopping radiation as well as a number of other metals, Furthermore, lead is about the worst of all elements for stopping neutrons thrown out by an atomic pile - a handful of household borax would do much better than lead for that job. Lead just bounces neutrons. and sends them merrily on their way; boron atoms, present in borax, soak them up like flypaper.

The most dangerous radiation from an atomic engine will be the' X-rays given off by the fissioning uranium atoms; nothing in the universe can really stop them. Matter, which appears to our eyes as solid, is purely an optical illusion - quite literally. Radio waves go right through a house or a brick wall. X-rays go sailing right through matter. About the only rays that don't penetrate easily are light rays; the illusion of solidity with which we are so familiar is due to the fact that we depend on that particular small part of the spectrum that is blocked by matter. To X-rays, matter is rather like a gray, ghostly cloud; dense matter is a bit grayer, low-density matter a more translucent stuff. Lead, because it has big, complex atoms, and is a dense material, happens to be a dull, leaden cloud to X-rays. Gold, being twice as dense as lead, is a much better X-ray stopper. Uranium. it happens, is the best X-ray stopper of all.

The reason lead is standard is easy to understand, however. The high melting point of gold, platinum, and similar good X-ray stoppers would make them inconvenient to use - among other things!

Also, it doesn't really make much difference what matter you use; thick layers of iron, still thicker layers of aluminum, or thinner layers of lead - all amount to the same thing, to X-rays. It's the quantity of matter, not the kind, that counts most.

Which is exceedingly unfortunate for aircraft use! It takes, the atomic scientists say, about 100 tons of shielding material to stop the X-rays from an atomic engine. If you use lead, the walls are about two feet thick; if you use aluminum, the walls will have to be 10 feet thick - and they'll be just as heavy.

Now a 100-ton block of shielding doesn't inconvenience a 20,000-ton ocean liner, or even a little 5,000-ton tramp steamer, and 100 tons of weight is handy for giving a locomotive good traction on the rails. But 100-ton automobiles are too hard to find parking places for, and 100-ton planes aren't for private airports. To carry a 100-ton engine, actually, the plane would he of the order of 700 to 800 tons minimum - and it would almost certainly have to he a seaplane.

Now it might he that Fairchild's contract calls for such a super-super colossus - but Fairchild is particularly noted for fine instrument work, precision-control equipment, and small-scale, highly-advanced engineering design.

There's another factor to consider, evidently. No human being can live within half it mile of an operating atomic engine - but a robot can. Electronic devices don't mind being sprayed with X rays and saturated with neutrons; neither type of atomic radiation will carry electricity, nor interfere with electric currents. The two other principal types of atomic radiation - beta rays (high speed electrons) and alpha rays (high speed helium nuclei) - are both easy to stop. Ordinary light-gauge sheet metal can block them.

It rather looks as though Fairchild is interested in a robot controlled atomic-engined plane of relatively small size - and the possibilities and requirements are intriguing. It can never be used for human transportation; it's deadly. It can't be used for freight transportation; the neutrons sprayed out by the fissioning uranium would render the cargo violently radioactive for months.

Even more interesting, once the atomic engine has been turned on, no human being can approach the ship even though the engine is turned off. The neutron spray renders the entire structure of the plane violently radioactive. The airport used by such a plane at take-off or landing would similarly be totally unfit for human use.

Somebody is going to have to design some really fancy contraptions for that job! A machine must be designed which under remote control, can repair, or disassemble the unapproachable atomic plane! Some sort of machine is apt to he needed. too. for scraping up the remains of unsuccessful and hellishly radioactive!-Some sort of machine is apt to be needed, too, for scraping up the remains of unsuccessful - and hellishly radioactive! - attempts. The entire operation will have to be directed from a considerable distance, or from inside many-foot-thick concrete ray-proof shelters.

The finished plane will, evidently, be purely a military device. As such, it will be a weapon at least as potent as the atomic bomb itself. Such a plane. as an interceptor, could wipe out a bomber fleet without firing a shot; it need only fly near the bombers once to destroy the crew. As an attack plane, it could strafe an armored column out of existence in one pass, neither heavy steel armor nor ditches offering any effective protection against its death spray. As a strafing plane above a city, raining down X-rays and neutrons, it would offer the would-be defenders two very poor choices: let it alone while it kills, or knock it down. If you do knock it down, it will probably be rigged to detonate the atomic engine. It would be rather difficult to decide which was the worse choice.

Of more interest and more use to mankind, however, will be the mechanisms that must be developed to service that death-ship. How would you set about making a machine that could disassemble and repair another machine under automatic control? How could you design the atomic plane for easiest - or, at least, possible! - servicing by mechanical grease monkeys?

That sort of design job calls for high skill and high engineering imagination on small-scale, precision mechanism. Just the sort of work for which Fairchild is well and favorably known!

The Editor.

 

 

Posted  January 17, 2012